Простые примеры использования закона ома

Полезная информация для начинающего электрика

Одним из первых шагов в профессиональной практике должно стать обучение использованию закона Ома для подсчетов различных показателей в сетях с одной или тремя фазами. Нужно также усвоить способы защиты электросети от выходов показателей тока и напряжения за дозволенные рамки и иных экстремальных ситуаций.

Как использовать закон Ома на практике

За выполняемую в сети работу всегда ответственен электроток. Именно он инициирует загорание электролампы, вращение ротора двигателя, сварку металлов и иные процессы, связанные с эксплуатацией электрического оборудования. Для рационального и безопасного выполнения таких работ необходимо, чтобы показатель электротока находился в пределах номинала. Он определяется резистивностью среды, в которой происходит токовое движение, и прилагаемым напряжением, которое, выступая в виде разницы прилагаемых энергетических потенциалов, ответственно за появление тока в цепи.

Важно! Если провод, через который осуществляется питание, обрывается или перегорает, схема обесточивается и становится неспособной реализовывать полезную работу. В проводах с тонким сечением это встречается чаще других. Сверхвысокое сопротивление дает противоположный эффект, настолько уменьшая ток, что становится невозможным выполнение им работы

Сверхвысокое сопротивление дает противоположный эффект, настолько уменьшая ток, что становится невозможным выполнение им работы.

Примеры из жизни

Один из таковых – разрыв выключателем света цепи проводки, служащей для напряжения путем, по которому оно доходит до лампы. Просвет между контактами не дает току идти по светильнику.

Еще один пример – замыкание розеточных клемм, инициирующее инцидент короткого замыкания. Для его предотвращения применяются предохранители, обеспечивающие максимальную быстроту выключения запитывающего напряжения.

Что такое участок цепи

Простейший его вариант включает в себя лампу, аккумулятор и соединительные кабели. Батарея выступает как внутренний источник напряжения, а лампа и прилегающая проводка выступают как фрагмент электроцепи, в котором выполняется полезная работа.

Как использовать треугольник закона Ома

Этот символ облегчает запоминание омовского правила. Сверху его находится напряжение, внизу – две другие величины. При необходимости вычислить один из параметров по известным значениям других его выделяют из фигуры и производят релевантное случаю действие: умножение или деление.

Треугольник Ома

Без умения применять омовский закон и вытекающие из него следствия на практике невозможно корректное обращение с электропроводкой. Для облегчения запоминания рекомендуется использовать треугольник Ома.

Интерпретация закона Ома

Чтобы обеспечить перемещение зарядов, нужно замкнуть контур. При отсутствии дополнительной силы ток существовать долго не сможет. Потенциалы быстро станут равными. Чтобы поддерживать рабочий режим цепи, нужен дополнительный источник (генератор, аккумуляторная батарея).

Полный контур будет содержать суммарное электрическое сопротивление всех компонентов. Для точных расчетов учитывают потери в проводниках, резистивных элементах, источнике питания.

Сколько напряжения нужно подать для определенной силы тока, вычисляют по формуле:

U = I * R.

Аналогичным образом с помощью рассмотренных отношений определяют иные параметры схемы.

Закон ома для неоднородного участка цепи

Перед тем, как записать формулу для подобной интерпретации закона, следует разобраться в таких понятиях, как линейные и нелинейные участки цепи.

Если сопротивление никаким образом не зависит от тока и подаваемого напряжения, то с ростом второго параметра, первый будет прямо пропорционально возрастать и наоборот, то есть зависимость можно описать прямой линией. Подобная зависимость относится к линейным участкам цепи и сопротивление имеет аналогичное название.

Однако вышеизложенный вариант считается идеальным и его можно смоделировать лишь в идеальных условиях, что фактически невозможно, ведь, как минимум, окружающая среда вносит свои коррективы. В этом случае, рост напряжения не будет прямо пропорциональным силе тока и на графике зависимость будет изображаться в виде кривой.

На рисунке изображено два графика, первый из которых описывает линейную зависимость, а второй нелинейную.

Чтобы отчетливо понимать разницу между этими понятиями, рассмотрим принцип работы обычной электрической лампы накаливания. При прохождении тока по нити, температура в значительной степени повышается, что приводит к заметному росту сопротивления. Соответственно, при возрастании напряжения, сила тока будет увеличиваться медленнее, то есть не линейно.

Учитывая вышесказанное, можно установить следующую зависимость:

I = U/ R = (f1 – f2) + E/ R,

Где f1 и f2 – потенциалы (соответственно f1 – f2 называется разницей потенциалов), E – ЭДС неоднородного участка цепи, а R – суммарное сопротивление на этом же участке.

Нужно упомянуть и о том, что электродвижущая сила не всегда в этом случае будет иметь положительное значение. Если направление тока источника будет аналогичным с направлением в электрической сети, протонов будет больше, чем электронов (положительных и отрицательных частиц), то в этом случае величина E будет иметь значение со знаком «+», в иной ситуации, этот параметр будет со знаком «-».

Закон Ома в интегральной форме

Для работы с этой методикой можно воспользоваться дифференциальным выражением (J = p*E).

Пояснительные данные к интегральной форме расчета

Базовую формулу преобразуют следующим образом:

  1. в обе части добавляют множитель, учитывающий элементарный отрезок длины проводника (dL);
  2. взяв первый интеграл по контрольным точкам, получают итоговое значение для сопротивления: R = p*(L/S);
  3. совмещают две формулы (1 и 2), выполняют математическое преобразование;
  4. интеграл второй части определит значение напряжения.

Итоговый результат соответствует определению классического вывода Ома, где взаимная связь u r I обоснована результатом экспериментов (I = U/R).

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Популярные статьи  Двускатная крыша своими руками

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Rрезисторов = (R * R)/R + R = R^2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Чтобы ребенок научился решать самые сложные задачи и чувствовал себя уверенно на олимпиадах и экзаменах, запишите его на бесплатный вводный урок в Skysmart.

Профессиональные учителя физики не только научат решать задачи и подготовят к экзамену, но и объяснят, как это все устроено: легко, интерактивно и с примерами из реальной жизни современных подростков.

Резистор

Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.

Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.

Вот так резистор изображается на схемах:

В школьном курсе физики используют Европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.

Вот так резистор выглядит в естественной среде обитания:

Полосочки на нем показывают его сопротивление.

На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:

О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.

Не сопротивляйтесь зову сердца и запишите ребенка в современную школу Skysmart. Здесь школьники решают захватывающие задачки по физике и понимают, как это пригодится в жизни.

А еще следят за прогрессом в личном кабинете, задают учителям любые — даже самые неловкие — вопросы и чувствуют себя увереннее на школьных экзаменах и контрольных.

Электрический ток

Мы выяснили, что подвижные носители зарядов в проводнике перемещаются под действием внешнего электрического поля, пока не выровняются потенциалы всех точек проводника. Однако если в двух точках проводника каким-то образом искусственно поддерживать различные потенциалы, то это поле будет обеспечивать непрерывное движение зарядов: положительных — от точек с большим потенциалом к ​​точкам с меньшим потенциалом, а отрицательных — наоборот. Когда эта разность потенциалов не меняется со временем, то в проводнике устанавливается постоянный электрический ток.

Вспомним из курса физики некоторые сведения об электрическом токе.

Упорядоченное движение свободных зарядов в проводнике называется электрическим током проводимости, или электрическим током.
Основными условиями существования электрического тока являются:

  • наличие свободных заряженных частиц;
  • наличие источника тока, создает электрическое поле, действие которого приводит упорядоченное движение свободных заряженных частиц;
  • замкнутость электрической цепи, которая обеспечивает циркуляцию свободных заряженных частиц.

В зависимости от величины удельного сопротивления, который вещества оказывают постоянному току, они делятся на проводники, полупроводники, диэлектрики.

В зависимости от среды различают особенности прохождения электрического тока, в частности в металлах, жидкостях и газах, где носителями тока могут быть свободные электроны, положительные и отрицательные ионы.

Направление движения электронов

Полная электрическая цепь содержит источник тока и электроприборы, а также устройство для замыкания (размыкания) электрической цепи. За направление тока в цепи условно выбирают направление от положительного полюса источника тока к отрицательному (реальное движение носителей тока — электронов — происходит в обратном направлении).

Основными физическими величинами, характеризующими электрический ток, являются следующие:

Сила тока I — физическая величина, характеризующая скорость перераспределения электрического заряда в проводнике и определяется отношением заряда q, проходящий через любой сечение проводника за время t, к величине этого интервала времени, I=q/t. Единица силы тока — ампер, 1А =1Кл/сек.

Электрическое сопротивление R — это физическая величина, характеризующая свойство проводника противодействовать прохождению электрического тока. Единица электрического сопротивления — ом, 1 Ом.

Сопротивление проводника зависит от его физических параметров — длины l, площади поперечного сечения S и от удельного сопротивления вещества p, из которой он изготовлен: R = р*l/S.

И как мы знаем, образования тока в проводнике обуславлено наличием разности потенциалов ϕ 1  – ϕ 2 , которую еще называют напряжением.

Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля, U = A/q. Единица напряжения — вольт, 1 В.

Единицы измерения: вольт, ампер и ом

Чтобы иметь возможность делать осмысленные утверждения об этих величинах в цепях, нам нужно уметь описывать их количества так же, как мы могли бы количественно определить массу, температуру, объем, длину или любые другие физические величины. Для массы мы можем использовать единицы «килограмм» или «грамм». Для температуры мы можем использовать градусы Фаренгейта или градусы Цельсия. В таблице ниже приведены стандартные единицы измерения электрического тока, напряжения и сопротивления:

Ток I Ампер А
Напряжение V Вольт В
Сопротивление R Ом Ом

«Символ», присвоенный каждой величине, представляет собой стандартную букву латинского алфавита, используемую для представления этой величины в формулах. Подобные стандартизированные буквы распространены во всех физических и технических дисциплинах и признаны во всем мире. «Сокращение единицы измерения» для каждой величины представляет собой алфавитный символ(ы), используемый в качестве сокращенного обозначения конкретной единицы измерения.

Каждая единица измерения названа в честь известного экспериментатора в области электричества: ампер в честь француза Андре М. Ампера, вольт в честь итальянца Алессандро Вольта, а ом в честь немца Георга Симона Ома.

Математический символ для каждой величины также имеет значение. «R» для сопротивления и «V» для напряжения говорят сами за себя («Resistance» и «Voltage», соответственно), тогда как «I» для тока кажется немного странным. Предполагается, что буква «I» должна представлять «интенсивность» («Intensity»)(потока заряда). Судя по исследованиям, которые мне удалось провести, кажется, что есть некоторые разногласия по поводу значения слова «I». Другой символ напряжения, «E», означает «электродвижущую силу» («Electromotive force»). Символы «E» и «V» по большей части взаимозаменяемы, хотя в некоторых текстах «E» зарезервировано для обозначения напряжения на источнике (таком как батарея или генератор), а «V»– для обозначения напряжения на любом другом элементе.

Популярные статьи  Заземление в частном доме своими руками: схема, устройство, подключение

Все эти символы выражаются заглавными буквами, за исключением случаев, когда величина (особенно напряжение или ток) описывается в терминах короткого периода времени (так называемые «мгновенные» значения). Например, напряжение батареи, которое стабильно в течение длительного периода времени, будет обозначаться заглавной буквой «E», тогда как пиковое напряжения при ударе молнии в тот самый момент, когда она попадает в линию электропередачи, скорее всего, будет обозначаться строчной буквой «е» (или строчной буквой «v»), чтобы отметить это значение как имеющееся в один момент времени. Это же соглашение о нижнем регистре справедливо и для тока: строчная буква «i» представляет ток в некоторый момент времени. Однако большинство измерений в цепях постоянного тока, которые стабильны во времени, будут обозначаться заглавными буквами.

Электродвижущая сила

При подключении к полюсам источника проводник, благодаря наличию разности потенциалов, свободные электроны проводимости, не прекращая хаотического движения, под действием кулоновских сил начнут двигаться направлено — от конца проводника с более низким потенциалом к концу с высшим, то есть от отрицательного полюса источника тока к положительному. Но силы электрического поля не могут переместить электрические заряды между полюсами внутри источника, поскольку действуют на них в противоположном направлении. Поэтому внутри источника, кроме электрических сил F кл , действуют еще и сторонние силы F ст. Природа сторонних сил может быть различной: в химических элементах — это действие химических реакций, в фотоэлементах — действие солнечных лучей, электрогенераторах — изменение магнитного потока.


Движение носителей заряда в полной электрической цепи

Сторонние силы перемещают отрицательные заряды от положительного полюса батареи к отрицательному и противодействуют электрическим силам, которые стремятся выровнять потенциалы на полюсах. Благодаря этому заряды циркулируют по замкнутому кругу, создавая ток. Участок круга, в которой заряды движутся под действием кулоновских сил, называют однородной, а ту, в которой носители заряда движутся под действием как кулоновских, так и сторонних сил, — неоднородной. Если соединить концы неоднородного участка, получим полный круг, в котором ту часть замкнутого круга, в которой заряды движутся под действием кулоновских сил (электростатической разности потенциалов), называют внешней, а ту, в которой носители заряда движутся под действием сторонних сил, — внутренней. Полюса источника тока разделяют внутренний и внешний участки цепи.


Электрическая цепь: а — однородный участок;б — неоднородный участок; в — полный круг, содержащий внешнюю и внутреннюю части

Для перемещения зарядов сторонние силы выполняют соответствующую работу А. Чем больше заряд перемещается, тем больше работа выполняется. Иными словами, A ст  ~ q или, используя знак равенства, A ст  = εq, где ε — постоянный коэффициент пропорциональности, характеризующий соответствующий источник и называеющийся электродвижущей силой источника тока (сокращенно ЭДС).

Электродвижущая сила ε — это физическая величина, характеризующий энергию стороних сил источника тока и измеряется: работой сторонних сил (то есть сил не электростатического происхождения), выполненной для перемещения единичного позитивного электрического заряда, ε = A ст/q.

Единица электродвижущей силы — вольт, 1 В = 1 Дж/ 1Кл.

В результате разделения внутри источника положительных и отрицательных зарядов, источник приобретает запас потенциальной электрической энергии, которая тратится на выполнение работы по перемещению зарядов по всей окружности. Работа сторонних сил равна сумме работ, выполняемых по перемещению заряда на внутренней и внешней участках цепи.

В источниках тока постоянно происходит разделение положительных и отрицательных зарядов, которые сосредотачиваются на его полюсах, что вызывает появление электрического поля (стационарного). Свойства этого поля отличаются от электрического поля неподвижных зарядов, которое мы изучали в электростатике. В таблице 2 представлены сравнения свойств электрических полей подвижных и неподвижных зарядов.

Электростатическое поле неподвижных зарядов Стационарное электрическое поле движущихся зарядов
Линии напряженности являются незамкнутыми.

Работа поля по замкнутому контуру равна нулю

Имеет замкнутые линии напряженности.

Работа поля по перемещению заряда вдоль замкнутой линии напряженности не равна нулю.

Такое поле называют вихревым

Формула закона Ома для однородного участка цепи

Для создания тока в проводнике нужно создать разницу потенциалов между определенными точками с применением источника питания. Этим действием активизируют перемещение заряженных частиц. Ток направляется в сторону меньшего потенциала, причем электроны будут перемещаться в обратном направлении.

Направление силы тока противоположно движению отрицательно заряженных частиц

Разную полярность можно отобразить соответствующими потенциалами ϕ1(+)>ϕ2(-). Вычитанием определенных величин получают значение напряжения (эдс, электродвижущую силу) на участке созданной цепи:

ϕ1- ϕ2 = U.

В ходе упомянутых практических экспериментов Георг Ом установил прямую зависимость силы тока (I) от увеличения разницы потенциалов. Одновременно было отмечено влияние материала проводника. Этот параметр – электрическое сопротивление (R), по мере увеличения препятствует прохождению тока. Итоговые зависимости выражаются известной формулой:

I = U/R.

«Магический» треугольник помогает запомнить алгоритмы типовых вычислений

На левой стороне рисунка наглядно изображены основные принципы рабочего процесса. Напряжение обеспечивает перемещение заряженных частиц. Сопротивление определяет условия для этого действия. Математическим преобразованием (правая сторона) можно получить формулы (треугольник), чтобы вычислять третий параметр по известным значениям двух других (i u r):

  • R=U/I;
  • U = I * R.

Отмеченное влияние проводника выражают через специальный коэффициент (p), которым обозначают удельное сопротивление. При рассмотрении контрольного образца следует учесть площадь поперечного сечения (S, в мм кв.) и длину (L, м). Итоговая формула для электрического сопротивления на основе перечисленных параметров:

R = p * (L/S).

Ее можно использовать при необходимости в комплексе с зависимостями закона Ома:

I = (U * S)/(p * L).

На основе рассмотренных процессов можно сформулировать энергетические потери, которые создает однородный участок цепи. На перемещение зарядов между двумя точками с разными потенциалами будут потрачена мощность:

P = U * I.

Прямо пропорциональный характер этого математического выражения подчеркивает соответствующую зависимость параметра от напряжения на участке цепи, тока. При необходимости в алгоритм вычислений добавляют электрическое сопротивление.

Закон Ома для цепей переменного тока

Сказанное выше, относится к сетям постоянного тока, где действует только активное сопротивление – чисто механическое противодействие со стороны материала или среды, движению потока свободных электронов.

Переменный ток отличается от постоянного следующим:

  • подвижные частицы периодически меняют направление на противоположное;
  • сила тока в каждом полупериоде (отрезке времени, в течение которого поток движется в одну сторону) меняется от нуля до максимума по синусоиде.

Такая форма электрического тока обуславливает следующие явления:

  1. создаваемое движущимися зарядами магнитное поле является непостоянным и в соответствии с законом электромагнитной индукции, наводит в сердечнике ЭДС. Она направлена против вызывающих ее сил – в обратную от движения потока зарядов сторону;
  2. магнитное поле с наибольшей индуктивностью образуется на участке сердечника, смотанного в катушку. Здесь же будет наблюдаться и наибольшая ЭДС самоиндукции;
  3. при наличии конденсатора в сети ее сопротивление не становится равным бесконечности, как в случае с постоянным током. Переменный будет течь по цепи, несмотря на наличие разрыва между обкладками конденсатора. При этом прибор, перезаряжаясь в каждом полупериоде, сопротивляется переменному току. Этот вид сопротивления индуктивностей и емкостей назвали реактивным.
Популярные статьи  Пленочный теплый пол своими руками

С учетом вышесказанного, закон Ома приобретает несколько иной вид: I = U / Z, где Z – суммарное сопротивление, включающее в себя реактивную и активную составляющие.

При наличии приборов комплексное сопротивление вычисляется по формуле: Z = Ra + 1/(I * f * C + I * f * L), где:

  • Ra – активное сопротивление, Ом;
  • 1 – мнимая единица (число, квадрат которого равен -1);
  • f – частота переменного тока, Гц;
  • С – емкость конденсатора, Ф;
  • L – индуктивность катушки, Гн.

В практических расчетах данное выражение применяется редко. Обычно при необходимости определить комплексное сопротивление, электрик замеряет клещами или амперметром силу тока и делит ее на напряжение, определенное при помощи вольтметра. В случае с переменным током под I и U подразумеваются не действительные характеристики, а их так называемые действующие значения.

Это постоянные величины, которыми с целью упрощения расчетов заменяют действительные, постоянно меняющиеся параметры тока и напряжения. Действующими значениями переменных характеристик называют постоянные ток и напряжение, которые вызывают в проводнике такое же тепловыделение, что и переменные.

Параллельное и последовательное соединение

В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.

Закон Ома для параллельного и последовательного соединения

Последовательное соединение

Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.

Последовательное соединение и параметры этого участка цепи

При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.

Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.

Параллельное соединение

Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.

Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.

Законы для параллельного соединения

Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.

Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.

Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.

Что нам дает параллельное и последовательное соединение?

Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:

Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга

Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя

Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.

В общем, это наиболее распространенные варианты использования этих соединений.

История открытия

Зависимость между током, напряжением и сопротивлением в электрической цепи была установлена опытным путём в 1827 году. Занимаясь исследованиями электричества, Георг Симон Ом проводил ряд экспериментов над проводниками, изучая их проводимость, и в частности, подключая последовательно к источнику энергии тонкие проводники, выполненные из различных материалов. Изменяя их длину, он получал определённую силу тока. Им было установлено, что на результаты экспериментов влияет источник электрической энергии, сопротивление которого оказывалось выше, чем у используемых в опытах проводников.

По совету своего наставника Поггендорфа Ом собрал термоэлектрическую батарею, отказавшись от использования химических элементов, применив вместо них открытую Зеебеком термопару медь-висмут. Для измерения параметров цепи им использовались крутильные весы, с магнитной стрелкой сконструированные Кулоном.

На основании своих исследований физик-экспериментатор пришёл к выводу, что отклонение стрелки зависит от определённой силы, названной силой тока. Когда стрелка отклонялась, Ом закручивал весы таким образом, чтобы она возвращалась в своё начальное положение. Угол, на который закручивалась нить, он считал пропорциональной силе тока. Изменяя условия, Ом вывел математическую зависимость, составив уравнение. Выглядело оно следующим образом: Х = а/b + x, где за Х принималась сила, отклоняющая магнитную стрелку, за а — длина исследуемого образца, а b+x обозначали интенсивность и считались постоянной величиной.

В 1862 году в журнале «Физика и химия» публикуется статья Ома под названием «Определение закона, по которому металлы проводят контактное электричество». Результаты его исследований не производят впечатления на других ученых, и его выводы остаются незамеченными. Ом продолжает эксперименты, выясняя, что электричество можно рассмотреть наподобие теплового потока. Подобно разнице температур, благодаря которой совершается тепловое движение, некой величиной можно описать движение электрического заряда. Так он вводит понятие ЭДС.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: